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Anomalous dynamic scaling of interfaces in disordered media
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We study a recently introduced stochastic growth model for interfacial depinning with quenched disorder in
111 dimensions. We numerically investigate the dynamic correlations of the interface roughening process by
studying theqth order equal-time height difference correlation functions. We find that this system does not
consist of multiscaling behaviors, in contrast to the molecular-beam-epitaxy motivated growth models with
annealed noise, although it does exhibit anomalous dynamic scaling and spatiotemporal intermittency. More-
over, we also investigate the influence of different boundary conditions on the global width of the system. For
small system sizes, the discrepancy between the obtained global widths with different boundary conditions will
moderately alter the value of the roughness exponent. We propose a modified definition of the global width and
quantitatively show that this modified definition is more universal for the systems with different boundary
conditions and, thus, more applicable to the experimental measurements.@S1063-651X~99!10001-1#

PACS number~s!: 05.40.2a, 47.55.Mh, 64.60.Ht
r
t f

ce
t

iv

nc
t
ia
tio

on
ng

e

-

o
e

-
t

-
-

bal
al
cal-
e-
the
re-
n.
-

ns
not
e-
-

n-
r-
inti-
nd
ed
r
-
-
th
ulti-
the
s.

ent
bal
eri-
the

is
-
a

he
is

s-
I. INTRODUCTION

The kinetic roughening phenomenon of growing inte
faces in random media has brought about much interes
its widespread applications in nature@1#. Recently, there has
been much interest in the scaling behaviors of interfa
roughened by quenched disorder in the media, such as
motion of a domain wall in the random field Ising model@2#
and fluid displacement in porous media@3#. The continuum
equation to describe the dynamics of such interfaces is g
as follows@4,5#:

] th~x,t !5n¹2h~x,t !1F1h„x,h~x,t !…. ~1!

Hereh(x,t) is the interface height at positionx and timet, F
is a uniform driving force that pushes the interface adva
ing, and the random termh„x,h(x,t)… represents the effec
of the quenched disorder in the media, which is Gauss
distributed with zero mean and some short spatial correla
length. Both analytical@6# and numerical @7,8# studies
showed that there exists a pinning-depinning transiti
Namely, the interface moves with a finite velocity for stro
pushing of F, while the interface gets pinned after som
finite time for small pushing ofF.

The global interfacial widthw(L,t) of the roughened sur
face obeys the following dynamic scaling form:

w2~L,t ![^@h~x,t !2h~x,t !#2&;L2x f ~L/t1/z!. ~2!

Throughout the paper, the overbar denotes the average
x in the system of sizeL and angular brackets denote th
statistical average. For the correlation lengthj;t1/z!L,
w(L,t);tb with b5x/z; for j;t1/z@L, w(L,t)[wsat(L)
;Lx, wherewsat(L) is the saturated global width for sys
tems of sizeL. x andz are known as theroughness exponen
and thedynamic exponent, respectively. At the depinning
transition, several numerical measurements@8,9# have ob-
tained the roughness exponentx.1.2. Growth models with
the roughness exponentx.1 have been coined ‘‘super
rough’’ @10#, sincew(L,t→`)/L diverges in the thermody
namic limit.
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Besides the above standard scaling behavior of the glo
interfacial width, the most intriguing feature of interfaci
advance in superrough growth models is that the global s
ing behavior differs substantially from the local scaling b
havior. The former is quantified by the measurement of
global width; while the latter is quantified by the measu
ment of the equal-time height difference correlation functio
Das Sarma, Ghaisas, and Kim@10# have hypothesized a ge
neric anomalous dynamic scaling ansatzto describe the be-
havior of equal-time height difference correlation functio
for all superrough growth models. Although this ansatz is
theoretically proven, its applicability to many surfac
diffusion-driven nonequilibrium growth models with an
nealed noise has been numerically verified@11#. Moreover,
the study of these nonequilibrium growth models with a
nealed noise@11,12#, proposed in the context of molecula
beam-epitaxy interface growth processes, suggests an
mate link between anomalous dynamic scaling a
multiaffinity. This motivates us to study a recently propos
stochastic growth model@13#, which is accepted as a cellula
automaton described by Eq.~1! in a discrete space-time lat
tice. In order to know whether theanomalous dynamic scal
ing ansatz@10# is also applicable to the growth models wi
quenched noise and whether the system consists of m
scaling behaviors, we investigate these issues by studying
qth order equal-time height difference correlation function
Subsequently, we want to understand whether differ
boundary conditions have much influence on the glo
width of the system. If so, the discrepancy among the exp
mentally measured values of the roughness exponent, in
literature, might be partially due to this effect. Since it
difficult to fully control and know exactly the boundary con
ditions in experimental setups, we are motivated to find
better definition of the global width so that it excludes t
influences of different boundary conditions and, thus,
more applicable to experimental measurements.

II. ANOMALOUS DYNAMIC SCALING

The definition of the growth model@13# in 111 dimen-
sions is as follows:~1! Each site on a square lattice is a
234 ©1999 The American Physical Society
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signed a random noiseh(x,h), taking the value 1 with prob-
ability p or 21 with probabilityq512p. ~2! The interface
is represented by a set of integersh(x,t), x51,2,...,L. The
flat initial conditions, i.e.,h(x,t50)[0 for all x, and peri-
odic boundary conditions, i.e.,h(L11,t)[h(1,t) and
h(0,t)[h(L,t), are imposed.~3! At each time stept, the
interface is updated simultaneously for allx:

h~x,t11!5H h~x,t !11 if vx.0,

h~x,t ! otherwise;
~3!

in the above expression, the valuevx is defined as

vx5h~x11,t !1h~x21,t !22h~x,t !1gh~x,h!. ~4!

The parametersg andq2p represent the relative strength
the random pinning force compared to the surface tens
and the driving force, respectively.

We are interested in theqth order equal-time height dif
ference correlation function, which is defined as

Cq~x,t ![^@h~x01x,t !2h~x0 ,t !#q&1/q ~5!

with the overbar denoting the spatial average and^¯& as the
statistical average. Thus, the usual equal-time height dif
ence correlation function is given by

G~x,t ![@C2~x,t !#2. ~6!

For superrough growth models, the behavior ofCq(x,t), in
the regime where the correlation lengthj;t1/z!L, has been
proposed to obey the followinganomalous dynamic scalin
ansatz@10,12#:

Cq~x,t !5xxqf q~x/t1/z!, ~7!

where the scaling functionf q(y) obeys

f q~y!5H y2kq for y!1,

y2xq for y@1.
~8!

In contrast, for the usual dynamic scaling behavior, the s
ing function goes to a constant quickly in the smallx/t1/z

limit. Thus, the nonsaturation of the scaling functionf q(y) in
the smally limit, the signature of anomalous dynamic sca
ing, gives rise to the difference between global and lo
scaling behaviors. Then, theqth moment of the step siz
distribution Cq(1,t) does not saturate quickly, either; but
increases with time out to substantially long times. Qua
tatively, from Eqs.~7! and ~8!, we see that, in the interva

1<x!t1/z at a fixed time slicet, Cq(x,t);xxq8 with xq8
5xq2kq , and, in the regime 1!t1/z!L, Cq(1,t);tkq /z. If
the values of the scaling exponents~xq8 or kq! depend on the
momentsq, the system then displays multiscaling behavio

In the following, we undertake extensive numerical stu
ies of various correlation functions of the system. From
experimental point of view, they are more interesting a
accessible quantities to be compared with the experime
data.

We first measure the equal-time height difference co
lation functionG(x,t). The simulation is done with the sys
tem sizeL5262 144 atp5pc.0.8004~for g51! @13# and
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averaged over 100 realizations. Figure 1 is the log-log plo
a set ofG(x,t) vs x for timest532,64,...,65 536 steps~from
bottom to top!, at the depinning transitionp5pc . We then
obtain, in Fig. 2, excellent data collapse of the sca
G(x,t)/x2x vs x/t1/z for times t532,64,...,65 536 steps, a
the depinning transitionp5pc , by inserting the values of the
roughness exponent (x51.23) and the dynamic exponen
(z51.42). The nonsaturation of the scaling function in F
2, in the regimex!t1/z!L, gives strong evidence that th
equal-time height difference correlation functionG(x,t)
obeys theanomalous dynamic scaling ansatz, instead of the
usual simple dynamic scaling. Here, the dynamic expon
z(51.4260.02) is obtained indirectly, through the relatio
z5x/b, from the direct measurements of the roughness
ponentx and the early time exponentb. The roughness ex
ponentx(51.2360.01) is obtained from the measureme
of the saturated global widthwsat(L)(;Lx) vs the system
sizeL, with the system sizeL58,16,...,8192 and the num-
ber of realizations (5221/L) depending onL. The early time

FIG. 1. The log-log plot of a set ofG(x,t) vs x for times t
532,64,...,65 536 steps~from bottom to top!, at the depinning tran-
sition p5pc . The data are obtained from 100 independent ru
with the system sizeL5262 144.

FIG. 2. The data collapse of the scaledG(x,t)/x2x vs x/t1/z for
times t532,64,...,65 536 steps, at the depinning transitionp5pc ,
with 2x52.46 andz51.42. The data are obtained from 100 ind
pendent runs with the system sizeL5262 144.
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exponentb(50.86560.005) is obtained from the measur
ment of the global width in early timesw(t) (;tb) vs the
time t ~<1000 time steps!, with the system size
L5262 144 and averaged over 40 realizations.

Next, we obtain the values of the exponentskq andxq8 ,
by direct measuringCq(1,t) and Cq(x,t). Recall that

Cq(1,t);tkq /z in the regime 1!t1/z!L andCq(x,t);xxq8 in
the interval 1<x!t1/z at a fixed time slicet. Figure 3 shows
the log-log plot of theqth moments of the step size distribu
tion Cq(1,t) vs time t, for q51 – 4 ~from bottom to top!, at
the depinning transitionp5pc . The straight lines, fit by leas
squares to the data from the interval 1024<t<131 072, give
the exponentsk1 /z50.19460.004, k2 /z50.18860.003,
k3 /z50.18860.003, andk4 /z50.18760.003. Figure 4 is
the log-log plot of theqth order equal-time height differenc
correlation functionCq(x,t) vs x at t51000 time steps, for
q51 – 4 ~from bottom to top!, at the depinning transitionp
5pc . The straight lines, fit by least squares to the data fr
the interval 1<x<20, give the exponentsx1850.8960.01,
x2850.8960.01, x3850.9060.01, andx4850.9060.01. The
data are obtained from 100 realizations with the system
L5262 144. As a consistency check on the numerical m
surements, we obtainkq1xq851.1760.02, 1.1660.02,
1.1760.02, and 1.1760.02, respectively, forq51 – 4, in
good agreement with the valuex51.2360.01, extracted
from the direct measurement of the global width. The o
tained numerical values fork2 andx28 are also in good agree
ment with an earlier work@14#, where k2.0.21 andx28
.0.92 were obtained by numerical integration of Eq.~1! in
111 dimensions.

The results clearly show that the values of the expone
(xq8 and kq) are independent of the momentsq, within the
range of statistical uncertainty. Thus, the system does
consist of multiscaling behaviors. Although the stochas
growth models with annealed noise, proposed to mimic
molecular-beam-epitaxy interfacial growth processes@11#,

FIG. 3. The log-log plot of theqth moments of the step siz
distributionCq(1,t) vs timet, for q51 – 4 ~from bottom to top!, at
the depinning transitionp5pc . The data are obtained from 10
independent runs with the system sizeL5262 144. The straight
lines, fit by least squares to the data from the interval 1024<t
<131 072, give the exponentsk1 /z50.19460.004, k2 /z50.188
60.003,k3 /z50.18860.003, andk4 /z50.18760.003.
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have the presence of anomalous dynamic scaling, inter
tency, and multiaffinity at the same time, the sufficient co
ditions to produce multiaffinity in growth models are st
unknown, as mentioned in Ref.@11#. Here, we give a con-
crete example that the presence of anomalous dynamic
ing and spatiotemporal intermittency, which is observed
Ref. @15#, does not guarantee the presence of multiaffinity
the system.

III. BOUNDARY EFFECTS

All the above simulations are done under the assumpti
of flat initial conditions and periodic boundary conditions.
is obvious that the global width of the systemw(L,t) is
influenced by the imposed boundary conditions. For
ample, the overall interfacial orientation is, roughly spea
ing, parallel to the substrate direction, if the periodic boun
ary conditions are imposed. However, the overall interfac
orientation might not be parallel to the substrate direction
the free boundary conditions, defined byh(L11,t)
[h(L,t) andh(0,t)[h(1,t), are imposed, instead. Thus, th
global width of the latter must be larger than that of t
former. However, it is not clear whether this influence
strong enough to alter the roughness exponent or just
prefactor. This motivates us to quantitatively measure
influence of different boundary conditions on the glob
width of the system. Since the overall interfacial orientati
of the system, depending on the boundary conditions, m
not be parallel to the substrate direction, we then meas
both wsat(L) and w̃sat(L) for comparison. The former de
notes the saturated global width relative to the substrate
rection, while the latter denotes the saturated global wi
relative to the overall interfacial orientation. The definitio
of wsat

2 (L) @[ limt→`w2(L,t)# is already given in Eq.~2!.
Here, we propose the definition ofw̃sat(L) as follows:

w̃sat
2 ~L ![ lim

t→`

w̃2~L,t ![ lim
t→`

^@h~x,t !2h̃~x,t !#2&, ~9!

FIG. 4. The log-log plot ofCq(x,t) vs x at t51000 time steps,
for q51 – 4 ~from bottom to top!, at the depinning transitionp
5pc . The data are obtained from 100 independent runs with
system sizeL5262 144. The straight lines, fit by least squares
the data from the interval 1<x<20, give the exponentsx1850.89
60.01, x2850.8960.01, x3850.9060.01, andx4850.9060.01.
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where, as mentioned before, the overbar and angular brac
denote the average overx in the system of sizeL and the
statistical average, respectively.h̃(x,t) denotes the heights
measured from the substrate, of a straight line fit by le
squares to the interfacial heights of the whole system a
given timet. Namely,

h̃~x,t !5h~x,t !1~x2 x̄!s~L,t ! ~10!

with the slope

s~L,t !5
12

~L221!
~x2 x̄!h~x,t !, ~11!

obtained from the least-squares fit to the interfacial confi
ration of the whole system at a given timet. After some
straightforward calculation, we obtain

wsat
2 ~L !2w̃sat

2 ~L !5
~L221!

12
lim
t→`

^s2~L,t !&. ~12!

Consequently, the difference between these two definiti
of the saturated global width is proportional to the magnitu
of the slope of the interfacial configuration at the satura
regime.

We subsequently perform the simulation with flat initi
conditions and different boundary conditions. Under perio
boundary conditions, the discrepancy betweenwsat(L) and
w̃sat(L) is negligible as expected, since the overall inter
cial orientation is, roughly speaking, parallel to the substr
direction. In contrast, under free boundary conditions, th
does exist some discrepancy betweenwsat(L) and w̃sat(L)
as shown in Fig. 5, which is the log-log plot ofwsat

2 (L)
~circle!, w̃sat

2 (L) ~square!, and wsat
2 (L)2w̃sat

2 (L) ~triangle!
vs the system sizeL, with L58,16,...,8192, at the depinning
transition p5pc . The number of realizations is equal
221/L and the simulation is done under free boundary con
tions. Although the relevance of the discrepancy betw

FIG. 5. The log-log plot ofwsat
2 (L) ~circle!, w̃sat

2 (L) ~square!,
and wsat

2 (L)2w̃sat
2 (L) ~triangle! vs the system sizeL, with L

58,16,...,8192, at the depinning transitionp5pc . The number of
realizations is equal to 221/L and the simulation is done under fre
boundary conditions. The straight lines, fit by least squares
wsat

2 (L) and w̃sat
2 (L), give the roughness exponentx51.2060.01

and 1.2260.02, respectively.
ets
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wsat(L) andw̃sat(L) gradually diminishes as the system si
increases, its value$[@wsat

2 (L)2w̃sat
2 (L)#1/2/wsat(L)% still

approximately reaches 3% for the system sizeL54096,
compared with only 0.06% for the same system size un
the periodic boundary conditions. In addition, the straig
lines in Fig. 5, fit by least squares towsat

2 (L) and w̃sat
2 (L),

give the roughness exponentx51.2060.01 and 1.22
60.02, respectively. We see that the value of the roughn
exponentx(51.2260.02), obtained from the measureme
of w̃sat

2 (L) with the free boundary conditions, is in bette
agreement with the value ofx(51.2360.01), obtained from
the measurement under periodic boundary conditions. T
the modified definition of the global widthw̃sat(L) is more
universal and applicable to the systems with different bou
ary conditions. This modified definition of the global widt
is also more useful in experimental measurements, since
difficult to control the boundary conditions in experiment
setups.

IV. CONCLUSION

In conclusion, we study the recently introduced stocha
growth model@13# for interfacial depinning with quenche
disorder in 111 dimensions. We numerically investigate th
dynamic correlations of the interface roughening process
studying theqth order equal-time height difference correl
tion functions. Due to the superrough nature of the system
the depinning transition, this model violates the usual sim
dynamic scaling in the sense that the global and local s
ings behave substantially different from each other. We fi
that the height-height correlation function does obey the
cently proposedanomalous dynamic scaling ansatz@10#,
thus affirming the hypothesis on the generality of this ans
for all superrough growth models. Any analytical treatme
on this type of models should take this effect into accou
Moreover, in contrast to superrough stochastic growth m
els with annealed noise, this system does not consist of m
tiscaling behaviors, although it exhibits anomalous dynam
scaling and spatiotemporal intermittent behavior@15#. This
distinct difference indicates that the origin of multiaffinity i
nonequilibrium growth models@11# is very subtle and in-
triguing. It demands much further work to resolve the iss
Finally, we also investigate the influence of different boun
ary conditions. For very large system sizes, the influence
different boundary conditions on the global width is neg
gible. However, for small system sizes, the discrepancy
tween the obtained global widths with different bounda
conditions will moderately alter the value of the roughne
exponent. Here, we propose a modified definition of the g
bal width, which is the interfacial width relative to the ove
all interfacial orientation, instead of the substrate directi
Quantitatively, we show that this modified definition of th
global width is more universal for the systems with differe
boundary conditions. Thus, it is more applicable to the
perimental measurements.
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