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Anomalous dynamic scaling of interfaces in disordered media
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We study a recently introduced stochastic growth model for interfacial depinning with quenched disorder in
1+1 dimensions. We numerically investigate the dynamic correlations of the interface roughening process by
studying theqth order equal-time height difference correlation functions. We find that this system does not
consist of multiscaling behaviors, in contrast to the molecular-beam-epitaxy motivated growth models with
annealed noise, although it does exhibit anomalous dynamic scaling and spatiotemporal intermittency. More-
over, we also investigate the influence of different boundary conditions on the global width of the system. For
small system sizes, the discrepancy between the obtained global widths with different boundary conditions will
moderately alter the value of the roughness exponent. We propose a modified definition of the global width and
quantitatively show that this modified definition is more universal for the systems with different boundary
conditions and, thus, more applicable to the experimental measurerj&h®63-651X99)10001-1

PACS numbg(s): 05.40—a, 47.55.Mh, 64.60.Ht

I. INTRODUCTION Besides the above standard scaling behavior of the global
interfacial width, the most intriguing feature of interfacial
The kinetic roughening phenomenon of growing inter-advance in superrough growth models is that the global scal-
faces in random media has brought about much interest fdng behavior differs substantially from the local scaling be-
its widespread applications in natud. Recently, there has havior. The former is quantified by the measurement of the
been much interest in the scaling behaviors of interface§lobal width; while the latter is quantified by the measure-
roughened by quenched disorder in the media, such as tgent of the equal-time height difference correlation function.
motion of a domain wall in the random field Ising mod2] ~ Das Sarma, Ghaisas, and Kii0] have hypothesized a ge-
and fluid displacement in porous medBj. The continuum Nericanomalous dynamic scaling ansatrdescribe the be-
equation to describe the dynamics of such interfaces is givefavior of equal-time height difference correlation functions

as follows[4,5]: for all superrough growth models. Although this ansatz is not
theoretically proven, its applicability to many surface-
gh(x,t)=vV2h(x,t) +F + n(x,h(x1)). (1) diffusion-driven nonequilibrium growth models with an-

nealed noise has been numerically verifi@¢d]. Moreover,
the study of these nonequilibrium growth models with an-
nealed nois¢11,12, proposed in the context of molecular-

Hereh(x,t) is the interface height at positionand timet, F
is a uniform driving force that pushes the interface advanc

ing, and the ra”do’.“ ternry(_x,h(x,t)) represents t_he effect_ beam-epitaxy interface growth processes, suggests an inti-
of the quenched disorder in the media, which is Gaussial ate link between anomalous dynamic scaling and

distributed with zero mean and some shprt spatial Cc’rr(alatioﬂwultiaffinity. This motivates us to study a recently proposed
length. Both analytlca[[G] and . ngmencal_[?,ﬁ] SIUd'eS. stochastic growth mod¢IL3], which is accepted as a cellular
showed that there exists a pinning-depinning transition, .-+ -"qascribed by E€1) in a discrete space-time lat-
Namely, the interface moves with a finite velocity for strong -« "\ order to know whether thenomalous dynamic scal-
pu_shln_g ofF, while the _mterface gets pinned after S‘Omeing ansat710] is also applicable to the growth models with
finite time for §mal| pyshlr)g OF. guenched noise and whether the system consists of multi-
The global interfacial widtlw(L,t) of the roughened sur- - sc5jing behaviors, we investigate these issues by studying the
face obeys the following dynamic scaling form: gth order equal-time height difference correlation functions.
Subsequently, we want to understand whether different
2 = _ 2\ __12 1/z
WAL D)=([h(.H—h(x, ]9~ L (L), @) boundary conditions have much influence on the global
Throughout the paper, the overbar denotes the average ovfdth of the system. If so, the discrepancy among the experi-
x in the system of siz& and angular brackets denote the Mentally measured values of the roughness exponent, in the

statistical average. For the correlation length t¥?<L, Iit_e_rature, might be partially due to this effect. Since it is
w(L,t)~t# with B=x/z; for é~t¥2>L, w(L,t)=wea(L) difficult to fully control and know exactly the boundary con-

ditions in experimental setups, we are motivated to find a
better definition of the global width so that it excludes the
influences of different boundary conditions and, thus, is
more applicable to experimental measurements.

~LX, wherewg,(L) is the saturated global width for sys-
tems of sizd_. y andz are known as theoughness exponent
and thedynamic exponentrespectively. At the depinning
transition, several numerical measureme@®9| have ob-
tained the roughness expongnt1.2. Growth models with
the roughness exponent>1 have been coined “super-
rough” [10], sincew(L,t—)/L diverges in the thermody- The definition of the growth mod¢L3] in 1+ 1 dimen-
namic limit. sions is as follows(1) Each site on a square lattice is as-

II. ANOMALOUS DYNAMIC SCALING
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signed a random noise(x,h), taking the value 1 with prob-
ability p or — 1 with probabilityq=1-p. (2) The interface 10° |
is represented by a set of integér,t), x=1,2,..,L. The
flat initial conditions, i.e.h(x,t=0)=0 for all x, and peri-
odic boundary conditions, i.e.h(L+1t)=h(1t) and
h(0t)=h(L,t), are imposed(3) At each time steft, the 10° ¢
interface is updated simultaneously for =l
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in the above expression, the valugis defined as é%/: © o
vx=N(x+ 1) +h(x=1t)=2h(x,t) +gn(x.h).  (4) 10’ %' | .
The parameterg andq— p represent the relative strength of 1 10 . 100 1000

the random pinning force compared to the surface tension

and the driving force, respectively. -
. T, . . . =32,64,..,65 536 stepdrom bottom to top, at the depinning tran-
We are interested in theth order equal-time height dif- sition p=p.. The data are obtained from 100 independent runs

ference correlation function, which is defined as with the system sizé =262 144.

FIG. 1. The log-log plot of a set o&(x,t) vs x for timest

— 1/
Cq(x,t)=([N(Xo+X,t) =h(xo,t)]%) ™ (5 averaged over 100 realizations. Figure 1 is the log-log plot of

with the overbar denoting the spatial average and as the a set ofG(x,t) vsx for timest=32,64,...,65 536 stegifrom

statistical average. Thus, the usual equal-time height differpono.m to toQ, at the depinning transitiop=p.. We then
ence correlation function is given by obtain, in Fig. 2, excellent data collapse of the scaled

G(x,t)/x?¥ vs x/tY? for timest=32,64,..,65 536 steps, at
G(x,t)=[C,(x,1)]2. (6)  the depinning transitiop=p., by inserting the values of the
roughness exponenty&1.23) and the dynamic exponent
For superrough growth models, the behaviorGfx,t), in  (z=1.42). The nonsaturation of the scaling function in Fig.
the regime where the correlation length t*?<L, has been 2, in the regimex<t*?<L, gives strong evidence that the
proposed to obey the followingnomalous dynamic scaling equal-time height difference correlation functida(x,t)
ansatz{10,12: obeys theanomalous dynamic scaling ansaizstead of the
usual simple dynamic scaling. Here, the dynamic exponent
Cq(x,t) =xXaf ((x/t17), (7)  z(=1.42+0.02) is obtained indirectly, through the relation
z=x/ B, from the direct measurements of the roughness ex-
ponenty and the early time exponeg The roughness ex-
y~ra for y<1, ponenty(=1.23+0.01) is_obtained from the measurement
fo(y)=1 _ (8) of the saturated global widttvg,(L)(~L*) vs the system
y X for y>1. sizeL, with the system sizé& =8,16,..,8192 and the num-

_ _ _ ber of realizations € 22Y/L) depending or.. The early time
In contrast, for the usual dynamic scaling behavior, the scal-

ing function goes to a constant quickly in the smalt*? 107
limit. Thus, the nonsaturation of the scaling functigy) in
the smally limit, the signature of anomalous dynamic scal-
ing, gives rise to the difference between global and local
scaling behaviors. Then, thgth moment of the step size
distribution C4(1t) does not saturate quickly, either; but it
increases with time out to substantially long times. Quanti-s
tatively, from Egs.(7) and (8), we see that, in the interval
1<x<t'? at a fixed time slicet, Cq(x,t)~xxé with xg
= Xq— Kq, and, in the regime &t*2<L, C,(1t)~t*a’% If
the values of the scaling exponeifjg, or «) depend on the 10° |
momentg, the system then displays multiscaling behaviors.
In the following, we undertake extensive numerical stud-
ies of various correlation functions of the system. From the

where the scaling functiohy(y) obeys

10°

G(x,z‘)/x2

experimental point of view, they are more interesting and ~ '° 10° ‘ 0 0 ' 0
accessible quantities to be compared with the experimenta Xt
data. FIG. 2. The data collapse of the scalédx,t)/x?X vs x/t*? for

We first measure the equal-time height difference corretimest=32,64,..,65 536 steps, at the depinning transitjpa p, ,

lation functionG(x,t). The simulation is done with the sys- with 2y=2.46 andz=1.42. The data are obtained from 100 inde-
tem sizeL =262 144 atp=p.=0.8004(for g=1) [13] and  pendent runs with the system size=262 144.
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FIG. 4. The log-log plot ofC4(x,t) vs x att=1000 time steps,
for q=1-4 (from bottom to top, at the depinning transitiop
=p.. The data are obtained from 100 independent runs with the
system sizd =262 144. The straight lines, fit by least squares to
the data from the interval£x<20, give the exponentg;=0.89
+0.01, x5=0.89+0.01, x5=0.90+0.01, andy,=0.90+0.01.

FIG. 3. The log-log plot of thegth moments of the step size
distributionCg(1) vs timet, for q=1-4 (from bottom to top, at
the depinning transition=p.. The data are obtained from 100
independent runs with the system size-262 144. The straight
lines, fit by least squares to the data from the interval ¥4
<131 072, give the exponenis, /z=0.194+0.004, x,/z=0.188
+0.003, k3/z=0.188+0.003, andx,/z=0.187+0.003. ) ) ) i

have the presence of anomalous dynamic scaling, intermit-
exponentB(=0.865+0.005) is obtained from the measure- tency, and multiaffinity at the same time, the sufficient con-
ment of the global width in early timew(t) (~t#) vs the ditions to produce multiaffinity in growth models are still
time t (<1000 time steps with the system size Unknown, as mentioned in Refl1]. Here, we give a con-

L =262 144 and averaged over 40 realizations. crete example that the presence of anomalous dynamic scal-
Next, we obtain the values of the exponertsand . ing and spatiotemporal intermittency, which is observed in
by direct measuringCy(11) and Cy(x.t). Recall that Ref.[15], does not guarantee the presence of multiaffinity in
’ e , the system.
Cq(1t)~t*a’Zin the regime kt'?<L andCqy(x,t)~xXa in y
the interval kx<t'” at a fixed time slice. Figure 3 shows
the log-log plot of thegth moments of the step size distribu- Ill. BOUNDARY EFFECTS
tion Cq4(11t) vs timet, for g=1—4 (from bottom to top, at All the above simulations are done under the assumptions

the depinning transitiop=p. . The straight lines, fit by least s fi4¢ initial conditions and periodic boundary conditions. It
squares to the data from the interval 1624<131 072, give s gpvious that the global width of the system(L,t) is
the exponentsk, /2=0.194:0.004, x,/z=0.188:0.003,  jnfluenced by the imposed boundary conditions. For ex-
#3/2=0.188+0.003, andx,/z=0.187-0.003. Figure 4 is  ampje, the overall interfacial orientation is, roughly speak-
the log-log plot of theqth order equal-time height difference ng parallel to the substrate direction, if the periodic bound-
correlation functionCq(x,t) vs x att=1000 time steps, for ary conditions are imposed. However, the overall interfacial
q=1-4 (from bottom to top, at the depinning transitiop  orientation might not be parallel to the substrate direction, if
=Pp.. The straight lines, fit by least squares to the data fromhe free boundary conditions, defined big(L+ 1)
the interval kx=<20, give the exponentg;=0.89-0.01,  =n(L,t) andh(0t)=h(1}), are imposed, instead. Thus, the
X>=0.89+0.01, xy3=0.90+0.01, andy,=0.90+0.01. The global width of the latter must be larger than that of the
data are obtained from 100 realizations with the system sizéormer. However, it is not clear whether this influence is
L=262 144. As a consistency check on the numerical meastrong enough to alter the roughness exponent or just the
surements, we obtaian+Xé=1.17i 0.02, 1.16:0.02, prefactor. This motivates us to quantitatively measure the
1.17+0.02, and 1.170.02, respectively, fog=1-4, in influence of different boundary conditions on the global
good agreement with the valug=1.23+0.01, extracted width of the system. Since the overall interfacial orientation
from the direct measurement of the global width. The ob-of the system, depending on the boundary conditions, might
tained numerical values for, andy; are also in good agree- not be parallel to the substrate direction, we then measure
ment with an earlier worK14], where x,=0.21 andy, Pothws,(L) andWs.(L) for comparison. The former de-
~0.92 were obtained by numerical integration of Efj.in  notes the saturated global width relative to the substrate di-
1+ 1 dimensions. rection, while the latter denotes the saturated global width
The results clearly show that the values of the exponemgelatizye to the_overall interfac.ial orientatio_n. The definition
(x4 and k) are independent of the momergswithin the ~ Of WsalL) [=lim,_..w?(L,1)] is already given in Eq(2).
range of statistical uncertainty. Thus, the system does nddere, we propose the definition @f,(L) as follows:
consist of multiscaling behaviors. Although the stochastic
growth models with annealed noise, proposed to mimic the 2 (L)E|im\7\,2(|_,t)z|im<[h(x,t)_’ﬁ(x,t)]2>, (9)

. . . sat
molecular-beam-epitaxy interfacial growth proces$es], t—oo t—oo
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WgafL) andWg,(L) gradually diminishes as the system size
increases, its valug=[w2, (L) —®2,(L)1¥Fwg(L)} stil
approximately reaches 3% for the system size 4096,
compared with only 0.06% for the same system size under
the periodic boundary conditions. In addition, the straight
lines in Fig. 5, fit by least squares wZ,(L) and®?2,(L),
1 give the roughness exponentg=1.20£0.01 and 1.22
o +0.02, respectively. We see that the value of the roughness
| exponenty(=1.22+0.02), obtained from the measurement
of W2,(L) with the free boundary conditions, is in better
agreement with the value gf( =1.23+0.01), obtained from
the measurement under periodic boundary conditions. Thus,
the modified definition of the global widtiv,,(L) is more
0o, ‘ ‘ 1 universal and applicable to the systems with different bound-
I 10 ary conditions. This modified definition of the global width
is also more useful in experimental measurements, since it is
FIG. 5. The log-log plot ofw?,(L) (circle), ®2,(L) (squarg, difficult to control the boundary conditions in experimental
and w2, (L) — W2, (L) (triangle vs the system sizd, with L setups.
=8,16,..,8192, at the depinning transitign=p.. The number of
realizations is equal to%/L and the simulation is done under free
boundary conditions. The straight lines, fit by least squares to
W3,(L) andWZ,(L), give the roughness exponegt= 1.20+0.01 In conclusion, we study the recently introduced stochastic
and 1.22-0.02, respectively. growth model[13] for interfacial depinning with quenched
) disorder in I+ 1 dimensions. We numerically investigate the
where, as mentioned before, the overbar and angular brackefsnamic correlations of the interface roughening process by
denote the average overin the system of sizé. and the  g¢,qying theqgth order equal-time height difference correla-
statistical average, respectively(x,t) denotes the heights, tion functions. Due to the superrough nature of the system at
measured from the substrate, of a straight line fit by leasthe depinning transition, this model violates the usual simple
squares to the interfacial heights of the whole system at @ynamic scaling in the sense that the global and local scal-

| ow’(L)

sat

- WZ(L)

sat’

L o wi(L)-w (L)

sar’ sat

IV. CONCLUSION

given timet. Namely, ings behave substantially different from each other. We find
~ — that the height-height correlation function does obey the re-
h(x,t) =h(x,t) +(x=x)s(L,t) (100 cently proposedanomalous dynamic scaling ansatz],

thus affirming the hypothesis on the generality of this ansatz
for all superrough growth models. Any analytical treatment
12 — on this type of models should take this effect into account.
s(L,t)= (Lz——l) (X=x)h(x,1), (11) Moreover, in contrast to superrough stochastic growth mod-
els with annealed noise, this system does not consist of mul-
obtained from the least-squares fit to the interfacial configutiscaling behaviors, although it exhibits anomalous dynamic
ration of the whole system at a given tinte After some  scaling and spatiotemporal intermittent behaVibB]. This

with the slope

straightforward calculation, we obtain distinct difference indicates that the origin of multiaffinity in
(L2— nonequilibrium growth model$11] is very subtle and in-
w2, (L)~ W2, (L)= - lim(s?(L,t)). (12  triguing. It demands much further work to resolve the issue.
t—oo Finally, we also investigate the influence of different bound-

) ~__ary conditions. For very large system sizes, the influence of

Consequently, the difference between these two definitiongjfferent boundary conditions on the global width is negli-
of the saturated glObal width is proportional to the magnitud ible. However, for small System SizeS, the discrepancy be-
of the slope of the interfacial configuration at the saturatedyeen the obtained global widths with different boundary
regime. conditions will moderately alter the value of the roughness

We subsequently perform the simulation with flat initial exponent. Here, we propose a modified definition of the glo-
conditions and different boundary conditions. Under perioditya| width, which is the interfacial width relative to the over-
boundary conditions, the discrepancy between(L) and gl interfacial orientation, instead of the substrate direction.
Wsa(L) is negligible as expected, since the overall interfa-Quantitatively, we show that this modified definition of the
cial orientation is, roughly speaking, parallel to the substratgyiobal width is more universal for the systems with different
direction. In contrast, under free boundary conditions, ther¢youndary conditions. Thus, it is more applicable to the ex-
does exist some discrepancy between (L) and W, (L) perimental measurements.
as shown in Fig. 5, which is the log-log plot @f2,(L)
(circle), W2,(L) (squarg, and w2, (L)—W2,(L) (triangle
vs the system size, with L=8,16,..,8192, at the depinning
transition p=p.. The number of realizations is equal to  The work of N.-N. Pang is supported in part by the Na-
22YL and the simulation is done under free boundary conditional Science Council of the Republic of China under Grant
tions. Although the relevance of the discrepancy betweemNo. NSC 88-2112-M-002-017.
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